Classical differential geometry of
two-dimensional surfaces

1 Basic definitions

This section gives an overview of the basic notions of differential geometry for two-
dimensional surfaces. It follows mainly Kreyszig [Kre91] in its discussion.

Definition of a surface

Let us consider the vector function X (¢!, £?%) € R? with
X:R*DE> (¢, = X(¢,&) eUCR?, (1)

where = is an open subset of R%. Let X (¢£!,£2) be of class r > 1 in =, which means
that one of its component functions X; (i € {z,y,z}) is of class r and the other
ones are at least of this class.! Let furthermore the Jacobian matrix 8();&,17)(%@) be

of rank 2 in = which implies that the vectors

o 0X
a *— aga

~9,X, ac{l,2}, 2)

are linearly independent. The mapping (1) then defines a smooth two-dimensional
surface patch U embedded in three-dimensional Euclidean space R?® with coordi-
nates &' and &2 (see Fig. 1). A union ¥ of surface patches is called a surface
if two arbitrary patches U and U’ of ¥ can be joined by finitely many patches
U=U,Us,,...,U,_1,U, =U"in such a way that the intersection of two subsequent
patches is again a surface patch [Kre9l, p. 76]. To simplify the following let us
restrict ourselves to a surface that can be covered by one patch U only.

The vectors e,, defined in Eqn. (2), are the tangent vectors of the surface. They are
not normalized in general. Together with the unit normal

e; X ey

(3)

n=——-—,
|61><€2|

they form a local basis (local frame) in R? (see Fig. 2):

e, n=0, and n-n=1 (4)

L' A function of one or several variables is called a function of class r if it possesses continous
partial derivatives up to order r.



rface

of a su

Figure 1: Parametrization

the su

Figure 2: Local frame on



The metric tensor (first fundamental form)

With the tangent vectors e,, one can define the metric tensor (also called the first
fundamental form)

Gab -= €q " €p - (5)
This covariant second rank tensor is symmetric (g. = gne) and positive definite

[Kre91, p. 86]. It helps to determine the infinitesimal Euclidean distance in terms
of the coordinate differentials [Kre91, p. 82]

ds? = [X(€'+d¢, 2 +de?) — X(€1,6%))° = (e1 dE' + ey dE?)?
= (eq ")’ = (e, - €) dE*de”
= gup dgde’, (6)

where the sum convention is used in the last two lines (see App. ??). The con-
travariant dual tensor of the metric may be defined via

1, ifa=b
Gac §° 1= 0y = . , (7)
0, ifa#b

where 8% is the Kronecker symbol. The metric and its inverse can be used to raise
and lower indices in tensor equations. Consider for instance the second rank tensor

tabi
Raising: toe ¢ = tab , and lowering: t," geb = tap - (8)

The determinant of the metric?
g:=detg = |gab] = d11922 — 912921 (9)

can be exploited to calculate the infinitesimal area element dA: let v be the angle
between e; and ey (see Fig. 2). Then

ler x e’ = [e1|*|es|*sin®y = g11922(1 — cos®7) = g11922 — (€1 - €3)?
= guygz — 912912 =9, (10)
and thus
dA = |e) x ey A€t de? = /g d*¢ . (11)

The covariant derivative

The partial derivative 9, is itself not a tensor. One therefore defines the covariant

derivative V, on a tensor ¢, """
aias...an  __ aias...an
thblbg...bm - aCtblbg...bm
das...an ai aid...an a2 ajas...d an
oty bmL de . T toibs bl ac . oo Tty b Lae
a1a2...0n d a1a2...an d a1a2...an, d
- tdbgbm Fblc - tbld..‘bm FbQC T T tblbg...d Fbmc ) (12>

2 Note that g is the matrix consisting of the metric tensor components gqp.



where the I' ¢ are the Christoffel symbols of the second kind with
Ly = (Ouep) - €, (13)

and V, is now a tensor. For the covariant differentiation of sums and products of
tensors the usual rules of differential calculus hold. The metric-compatible Laplacian
A can be defined as A .=V, V%

Note in particular that

Vaeb = ﬁaeb — Fabcec s and (14)
Vagre = Vag" =Vaeg=0. (15)

Equation (15) is also called the Lemma of Ricci. It implies that raising and lowering
of indices commutes with the process of covariant differentiation.

Orientable surfaces

The orientation of the normal vector n in one point S of the surface depends on
the choice of the coordinate system [Kre91, p. 108]: exchanging, for instance, &!
and &2 also flips m by 180 degrees. A surface is called orientable if no closed curve
C through any point S of the surface exists which causes the sense of n to change
when displacing n continuously from S along C back to S. An example of a surface
that is not orientable is the Mobius strip.

The extrinsic curvature tensor (second fundamental form)

Two surfaces may have the same metric tensor g,, but different curvature properties
in R3. In order to describe such properties let us consider a surface 3 of class® r > 2
and a curve C of the same class on X with the parametrization X (£'(s),£%(s)) on
¥, where s is the arc length of the curve (see Fig. 3).

At every point of the curve where its curvature k& > 0, one may define a moving
trihedron {t,p,b} where t = X is the unit tangent vector, p = t/|t| = t/k is the
unit principal normal vector, and b = t x p is the unit binormal vector of the curve.*
Furthermore, let 1 be the angle between the unit normal vector n of the surface and
the unit principal normal vector p of the curve with cosn = p-n (see again Fig. 3).
The curvature k of the curve can then be decomposed into a part which is due to
the fact that the surface is curved in R? and a part due to the fact that the curve
itself is curved. The former will be called the normal curvature K, the latter the
geodesic curvature K,. One defines:

K, = —t-n=—k(p-n)=—kcosn, and (16)
K, == t-(txm)=kt (pxmn)=ksiny sign(n-b) . (17)

3 This means that its parametrization X (£1,£2) is of class r > 2.
4 The dot denotes the derivative with respect to the arc length s.



Figure 3: Curve on a surface

Here, we are interested in the curvature properties of the surface. Therefore, the
normal curvature K, is the relevant quantity that has to be studied a bit further.®
The vector t may be written as

B X = (") = (Dhen) €€ + en" (18)
Thus, Eqn. (16) turns into
K, = —kcosn = (—n-0,ep) E€° (19)

where it has been exploited that d,e, = Jdye,. The expression in brackets is the
extrinsic curvature tensor or second fundamental form

Kgp:=-n-0,e,=e, -0pn . (20)

It is a symmetric covariant second rank tensor such as the metric. The second
relation in Eqn. (20) follows if one differentiates the first equation of (4) with respect
to £°.

The extrinsic curvature can be written covariantly:

Ky :=-n-V,e . (21)

This is possible because d,e, differs from V,e, only by terms proportional to the
tangent vectors e., which vanish when multiplied by n (see Eqn. (14)).

® The minus sign in the definition of K, Eqn. (16), is unfortunately a matter of convention and is
here chosen in accordance to the literature where the surface stress tensor for fluid membranes
has been introduced [CG02, Guv04]. A sphere with outward pointing unit normal has a positive
normal curvature then. Note that this differs from Ref. [Kre91].



One can easily see from Eqn. (20) that K, has got something to do with curvature:
at every point of the surface it measures the change of the normal vector in R? for
an infinitesimal displacement in the direction of a coordinate curve.
To learn more about the normal curvature let us consider a reparametrization of the
curve C with the new parameter ¢t. One gets
L, derde &
£ = — =, (22)
dt ds S
where ’ denotes the derivative with respect to t. Equation (19) thus takes the form
Kup €€ (6) Kup €€ Ko dg"dg’
(s')? Gap EVEY Gap dE2dEP
For a fixed point S, K, and g, are fixed as well. The value of K, then only depends
on the direction of the tangent vector t of the curve. One may search for extremal
values of K, at S by rewriting Eqn. (23):

Kn = Kab f'aéb =

(23)

(Kab - Kngab) éaéb =0. (24>
A differentiation with respect to £¢ yields the result
(Kac - Kngac) éa =0 ) (25>

because dK,, = 0 is necessary for K, to be extremal. Through the raising of one
index, Eqn. (25) becomes an eigenvalue problem for K?. Its eigenvectors are the
tangent directions along which the normal curvature is extremal. They are called
principal directions and are orthogonal to each other [Kre91, p. 129]. The eigenvalues
will be called the principal curvatures ki and ks of the surface in point S. All other
values of K, in S in any direction can be calculated via Euler’s theorem [Kre91,
p. 132]. If the curve follows a principal direction at every point, it is also called a
line of curvature.

For an arbitrary curve on the surface the symbol K denotes the normal curvature
belonging to the direction the curve is following, whereas K, denotes the normal
curvature belonging to the direction perpendicular to the curve in every point.

It is useful to define the following two notions: the total curvature

K= g"Ky=K"=k +ky, (26)
and the Gaussz’an curvature
KG = |K2| = k?lk’g . (27)

The quantities |K| and K¢ are invariant under surface reparametrizations because
they only involve the eigenvalues of the extrinsic curvature tensor. They occur, for
instance, in the surface Hamiltonian of a fluid membrane. Note that one can rewrite
Kg

K11 Koy — K19 Ky

Kg = ‘K}” = |Kachb| = |Ka0| ’ng| = g

(28)



The equations of Gauss and Weingarten

With the help of the extrinsic curvature it is also possible to find relations for the
partial derivatives of the local frame vectors: the normal vector m is a unit vector
(see Eqn. (4)) and therefore

n-J,n=0. (29)

Thus, d,n is a linear combination of the tangent vectors e,. We know that d,n-e, =
K (see Eqn. (20)), which yields the Weingarten equations

on=V,n=Kle, . (30)

For the tangent vector e, a decomposition yields

Ouep = (n - Oyep)m + (e° - 0,ep) e, (20)(13) _ an+ 1 e . (31)

These are the Gauss equations, which can be rewritten covariantly:

Vaeb (2) — N gpM . (32)

Intrinsic curvature and integrability conditions

Do the partial differential Eqns. (30) and (32) have solutions for any chosen g, and
Ku? The answer is no; certain integrability conditions have to be satisfied. We
require the embedding functions X to be of class r > 3 and

&ﬁbec = E)baaec . (33)

From this follows [Kre91, p. 142 et seq.]

Rabcd = Kbng — KbCKc(ll y and (34)
va[(bc - VbI{ac y (35)

where
R%q = 0Ly — 0al " + T/ T 0 = 1T (36)

is called the mized Riemann curvature tensor. It is intrinsic because it does not
depend on the normal vector n. Expression (35) is also referred to as the equation
of Mainardi-Codazzi.
The Ricci tensor is defined as the contraction of the Riemann tensor with respect
to its first and third index:

Ry =R, . (37)

A further contraction of the Ricci tensor yields the intrinsic scalar curvature of the
surface (Ricci scalar)
R =g R - (38)



From Eqn. (34) one then obtains

Ry = KKu— K.K;,  and (39)
R = K*— K%K, . (40)

Combining Eqn. (28) with the completely covariant form of Eqn. (34), one gets after
a few calculations:

Rab = KGgaba and (41>
R = 2Kg . (42)

These equations confirm Gauss’ Theorema Egregium, which states that the Gaussian
curvature, even though originally defined in an extrinsic way, in fact only depends on
the first fundamental form [Kre91, p. 145] and is thus an intrinsic surface property.

2 Gauss-Bonnet theorem

The Gauss-Bonnet theorem for simply connected surfaces

The Gauss-Bonnet theorem states the following [Kre91, p. 169]: Let 3 be a simply
connected surface patch of class ry, > 3 with simple closed boundary 9% of class
Tox, > 3. Furthermore, let X (¢1(s), £%(s)) be the parametrization of the boundary
curve, where s is the arc length. Then

/ dsKg—i-/ dA K¢ =2m , (43)
%0 o

where dA is the infinitesimal area element, K, is the geodesic curvature of 9%, and
K¢ is the Gaussian curvature of ¥y. Note that the integration along the boundary
curve has to be carried out in such a sense that the right-hand rule is satisfied: take
your right thumb and point it in the direction of the normal vector n. If you then
curl your fingers, the tips indicate the direction of integration.

Omne can check the consistency of Eqn. (43) easily by considering a flat circle with
radius a: Its Gaussian curvature is zero and therefore also the integral over it.
The geodesic curvature, however, is equal to 1/a in every point of the boundary.
Thus, the integral over K, yields 2wa x 1/a, which is equal to the right-hand side
of Eqn. (43).

Generalization to multiply connected surfaces

A generalization of this theorem to multiply connected surfaces is also possible
[Kre91l, p. 172]: One can cut multiply connected surfaces into simply connected
ones. Take, for instance, a surface as in Fig. 4. The path of integration along the
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Figure 4: Integration contour for multiply connected surface patches

boundary may be chosen as depicted by the arrows. The sections are passed twice in
opposite directions; their contributions therefore cancel each other. The end points
of every section, however, add a term of 7 each to the integral [ds K,. This is due
to the rotation the tangent makes at each of these points. Every section therefore
contributes 27 to the integral. For the case of Fig. 4 we thus have an extra term of
4.

Application to closed surfaces

It is also possible to apply the Gauss-Bonnet theorem to closed surfaces [Kre9l,
p. 172]. Topologically, any closed orientable surface is homeomorphic® to a sphere
with p attached “handles”. This number p is also called genus of the surface.
Consequently, a sphere has genus 0, a torus genus 1, etc. One then obtains for
any closed orientable surface 3 of genus p [Kre91, p. 172]:

/ A Ko = 4(1—p) | (44)

This implies that the integral over the Gaussian curvature is a topological invariant
for any closed surface with fixed genus p.

3 Monge parametrization

For surfaces with no “overhangs”, it is sufficient to describe their position in terms of
a height h(x,y) above the underlying reference plane as a function of the orthonormal
coordinates = and y. The direction of the basis vectors {x,y, 2z} € R? is chosen as
depicted in Fig. 5.

6 This means that the mapping and its inverse are continuous and bijective.
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Figure 5: Monge parametrization

The tangent vectors on the surface can then be expressed as e, = (1,0, h,)T and
e, = (0,1,h,)", where h; = 9;h (i,j € {x,y}). The metric is equal to
gij = 5”' —+ hlhj y (45)
where §;; is the Kronecker symbol. We also define V = (9,,9,)". The metric
determinant and the infinitesimal surface element can then be written as
g = |gijl =1+ (Vh)* and (46)
dA = gdxdy. (47)
The inverse metric is given by
hih;
rl

Note that Eqns. (45) and (48) are not tensor equations. The right-hand side gives
merely numerical values for the components of the covariant tensors g;; and ¢g"/. The

unit normal vector is equal to
1 _
n— ( v ) . (49)

With the help of Eqn. (20) the extrinsic curvature tensor can be calculated:

B
K;=——2 (50)
J \/§
where h;; = 0;0;h. Note that Eqn. (50) again is not a tensor equation and gives
only numerical values for the components of K;;.

g7 =6y — (48)
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Finally, it is also possible to write the total curvature K in Monge parametrization:

K=-V. <%) . (51)

One is often interested in surfaces that deviate only weakly from a flat plane. In
this situation the gradients h; are small. Therefore, it is enough to consider only
the lowest nontrivial order of a small gradient expansion. K and dA can then be
written as

K = —V*h+0O[(Vh)?], (52)
dA = {1 + %(Vh)Q + (9[(Vh)4]} da dy . (53)
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